UVA Solution 453 - Intersecting Circles - Volume 4 - Online Judge Solution

Latest

It is a free Online judges problems solution list. Here you can find UVA online Judge Solution, URI Online Judge Solution, Code Marshal Online Judge Solution, Spoz Online Judge Problems Solution

Friday, May 19, 2017

UVA Solution 453 - Intersecting Circles - Volume 4

UVA Solution 453 - Intersecting Circles - Volume 4

UVA Online Judge Solution 453 - Intersecting Circles | Volume 4
UVA Problem Link -

Problem Name: 453 - Intersecting Circles solution
Problem Number : UVA - 453 - Intersecting Circles solution
Online Judge : UVA Online Judge Solution
Volume: 4
Solution Language : C plus plus

UVA Online Judge Solution, UVA OJ Solution list, UVA Problems Solution, UVA solver, UVA all problem solution list- UVA Solution 453 - Intersecting Circles - Volume 4

UVA Solution 453 - Intersecting Circles Code in CPP:

#include <stdio.h>
#include <math.h>
#include <algorithm>
using namespace std;
struct Cir {
    double x, y, r;
    int scan() {
        return scanf("%lf %lf %lf", &x, &y, &r) == 3;
    }
};
#define eps 1e-6
struct Pt {
    double x, y;
    bool operator<(const Pt other) const {
        if(fabs(x-other.x) < eps)
            return y < other.y;
        return x < other.x;
    }
};
int IntersectCir(Cir A, Cir B, Pt v[]) { // Pt v[] result buffer
    double disAB = sqrt((A.x-B.x)*(A.x-B.x)+(A.y-B.y)*(A.y-B.y));
    if(fabs(disAB) < eps && fabs(A.r-B.r) < eps) {
        if(A.r < eps) {
            v[0].x = A.x;
            v[0].y = A.y;
            return 1;
        }
        return 0;
    }
    if(A.r+B.r+eps < disAB || A.r+disAB+eps < B.r || B.r+disAB+eps < A.r) {
        return -1;
    }
    double x, y, vx, vy;
    vx = B.x - A.x;
    vy = B.y - A.y;
    if(fabs(disAB-A.r-B.r) < eps || fabs(A.r-disAB-B.r) < eps ||
       fabs(B.r-A.r-disAB) < eps) {
        if(fabs(disAB-A.r-B.r) < eps) { // (A)(B)
            v[0].x = A.x+vx*A.r/(A.r+B.r);
            v[0].y = A.y+vy*A.r/(A.r+B.r);
        } else {
            if(A.r < B.r) { //((A)B)
                v[0].x = A.x-vx*A.r/(B.r-A.r);
                v[0].y = A.y-vy*A.r/(B.r-A.r);
            } else { //((B)A)
                v[0].x = B.x+vx*B.r/(A.r-B.r);
                v[0].y = B.y+vy*B.r/(A.r-B.r);
            }
        }
        return 1;
    }
    double theta = acos((A.r*A.r+disAB*disAB-B.r*B.r)/2/A.r/disAB);
    double rvx, rvy; //rotate vector
    rvx = vx*cos(theta)-vy*sin(theta);
    rvy = vx*sin(theta)+vy*cos(theta);
    v[0].x = A.x+rvx*A.r/disAB;
    v[0].y = A.y+rvy*A.r/disAB;
    rvx = vx*cos(-theta)-vy*sin(-theta);
    rvy = vx*sin(-theta)+vy*cos(-theta);
    v[1].x = A.x+rvx*A.r/disAB;
    v[1].y = A.y+rvy*A.r/disAB;
    return 2;
}
int main() {
    Cir A, B;
#define eps2 5.14e-5
    while(A.scan()) {
        B.scan();
        Pt p[2];
        int r = IntersectCir(A, B, p);
        if(r == 0)
            puts("THE CIRCLES ARE THE SAME");
        else if(r < 0)
            puts("NO INTERSECTION");
        else if(r == 1)
            printf("(%.3lf,%.3lf)\n", p[0].x+eps2, p[0].y+eps2);
        else {
            sort(p, p+2);
            printf("(%.3lf,%.3lf)(%.3lf,%.3lf)\n", p[0].x+eps2, p[0].y+eps2, p[1].x+eps2, p[1].y+eps2);
        }
    }
    return 0;
}


Tags: UVA Online Judge Solution, UVA OJ Solution list, UVA Problems Solution, UVA solver, UVA all problem solution list, UVA 453  code in C, UVA code in C++, UVA 453 solution in C, UVA Intersecting Circles solution

No comments:

Post a Comment