UVA Solution 209 - Triangular Vertices - Solution in C++ | Volume 2 - Online Judge Solution

Latest

It is a free Online judges problems solution list. Here you can find UVA online Judge Solution, URI Online Judge Solution, Code Marshal Online Judge Solution, Spoz Online Judge Problems Solution

Sunday, April 30, 2017

UVA Solution 209 - Triangular Vertices - Solution in C++ | Volume 2

UVA Solution 209 - Triangular Vertices - Solution in C++ | Volume 2


UVA Online Judge Solution 209 - Triangular Vertices| Volume 2
UVA Problem Link - https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=4&page=show_problem&problem=145

Problem Name: Triangular Vertices
Problem Number : UVA - 209 Triangular Vertices
Online Judge : UVA Online Judge Solution
Volume: 2
Solution Language : C plus plus

UVA Solution 209 Code in CPP:


#include <stdio.h>
#include <math.h>
#include <sstream>
#include <algorithm>
#define eps 1e-6
using namespace std;
double trix[32768], triy[32768];
const double pi = acos(-1);
struct Pt {
    double x, y;
};
bool cmp(Pt a, Pt b) {
    if(a.x != b.x)
        return a.x < b.x;
    return a.y < b.y;
}
double cross(Pt o, Pt a, Pt b) {
    return (a.x-o.x)*(b.y-o.y)-(a.y-o.y)*(b.x-o.x);
}
double dist(Pt a, Pt b) {
    return (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y);
}
Pt P[1000], CH[1000];
int convex(int n) {
    sort(P, P+n, cmp);
    int m = 0, i, t;
    for(i = 0; i < n; i++) {
        while(m >= 2 && cross(CH[m-2], CH[m-1], P[i]) <= 0)
            m--;
        CH[m++] = P[i];
    }
    for(i = n-1, t = m+1; i >= 0; i--) {
        while(m >= t && cross(CH[m-2], CH[m-1], P[i]) <= 0)
            m--;
        CH[m++] = P[i];
    }
    return m;
}
int main() {
    trix[1] = triy[1] = 0;
    double disy = sqrt(3)/2;
    int i, j, idx = 2, x;
    char buf[1024];
    for(i = 2; idx < 32768;i++) {
        trix[idx] = trix[idx-i+1]-0.5;
        triy[idx] = triy[idx-i+1]-disy;
        for(j = 1, idx++; j < i && idx < 32768; j++, idx++) {
            trix[idx] = trix[idx-1]+1;
            triy[idx] = triy[idx-1];
        }
    }
    while(gets(buf)) {
        stringstream sin(buf);
        int n = 0, m;
        while(sin >> x) {
            P[n].x = trix[x];
            P[n].y = triy[x];
            n++;
        }
        sort(P, P+n, cmp);
        m = convex(n);
        printf("%s ", buf);
        if(m-1 != n || n == 1 || m-1 == 5) {
            puts("are not the vertices of an acceptable figure");
            continue;
        }
        double tmp = dist(CH[0], CH[1]);
        for(i = 1; i < m; i++) { // check all sides must be of the same length.
            if(fabs(dist(CH[i], CH[i-1])-tmp) > eps)
                break;
        }
        if(i != m) {
            puts("are not the vertices of an acceptable figure");
            continue;
        }
        for(i = 1; i < m-1; i++) { // check each side must coincide with an edge in the grid.
            tmp = fabs(cross(CH[i], CH[i-1], CH[i+1]));
            if(fabs(asin(tmp/sqrt(dist(CH[i], CH[i-1]))/sqrt(dist(CH[i], CH[i+1])))*180/pi - 60) > eps)
                break;
        }
        if(i != m-1) {
            puts("are not the vertices of an acceptable figure");
            continue;
        }
        printf("are the vertices of ");
        if(n == 3)
            puts("a triangle");
        else if(n == 4)
            puts("a parallelogram");
        else
            puts("a hexagon");
    }
    return 0;
}

No comments:

Post a Comment