UVA Solution 149 - Forests - Solution in C++ | Volume 1 - Online Judge Solution

Latest

It is a free Online judges problems solution list. Here you can find UVA online Judge Solution, URI Online Judge Solution, Code Marshal Online Judge Solution, Spoz Online Judge Problems Solution

Saturday, April 29, 2017

UVA Solution 149 - Forests - Solution in C++ | Volume 1

UVA Solution 149 - Forests - Solution in C++ | Volume 1


Problem Name:  Forests
Problem Number : UVA - 149
Online Judge : UVA Online Judge Solution
Volume: 1
Solution Language : C plus plus

UVA Solution 149 Code in CPP:

#include <stdio.h> 
#include <stdio.h> 
#include <math.h>
#include <string.h>
#include <algorithm>
#include <vector>
using namespace std;
#define eps 1e-6
struct Pt {
    double x, y;
    Pt(double a = 0, double b = 0):
     x(a), y(b) {}
    bool operator<(const Pt &a) const {
        if(fabs(x-a.x) > eps)
            return x < a.x;
        return y < a.y;
    }
    Pt operator+(const Pt &a) const {
        return Pt(x + a.x, y + a.y);
    }
 Pt operator-(const Pt &a) const {
        return Pt(x - a.x, y - a.y);
    }
    Pt operator/(const double a) const {
        return Pt(x/a, y/a);
    }
};
double dist(Pt a, Pt b) {
 return hypot(a.x - b.x, a.y - b.y);
}
double dist2(Pt a, Pt b) {
 return (a.x - b.x)*(a.x - b.x) + (a.y - b.y)*(a.y - b.y);
}
double length(Pt a) {
 return hypot(a.x, a.y);
}
double dot(Pt a, Pt b) {
 return a.x * b.x + a.y * b.y;
}
double cross2(Pt a, Pt b) {
 return a.x * b.y - a.y * b.x;
}
double cross(Pt o, Pt a, Pt b) {
    return (a.x-o.x)*(b.y-o.y) - (a.y-o.y)*(b.x-o.x);
}
double angle(Pt a, Pt b) {
 return acos(dot(a, b) / length(a) / length(b));
}
Pt getLineIntersection(double a1, double b1, double c1, double a2, double b2, double c2) {
 // a1 x + b1 y + c1 = 0, a2 x + b2 y + c2 = 0
 c1 = -c1, c2 = -c2;
 double d, dx, dy;
 d = a1 * b2 - a2 * b1;
 dx = c1 * b2 - c2 * b1;
 dy = a1 * c2 - a2 * c1;
 return Pt(dx/d, dy/d);
}
void getTangentIntersection(Pt co, double r, Pt p, Pt &pa, Pt &pb) {
 double a, b, c;
 double m1a, m1b, m1c, m2a, m2b, m2c, m1, m2;
 a = r*r - (co.x - p.x) * (co.x - p.x);
 b = 2 * (co.x - p.x) * (co.y - p.y);
 c = r*r - (co.y - p.y) * (co.y - p.y); // am^2 + bm + c = 0
 if(fabs(a) < eps) {
  m2 = (-c)/b;
  m1a = 1, m1b = 0, m1c = - (m1a * p.x + m1b * p.y);
  m2a = m2, m2b = -1, m2c = - (m2a * p.x + m2b * p.y);
 } else {
  m1 = (-b + sqrt(b*b - 4*a*c))/ (2*a);
  m2 = (-b - sqrt(b*b - 4*a*c))/ (2*a);
  m1a = m1, m1b = -1, m1c = - (m1a * p.x + m1b * p.y);
  m2a = m2, m2b = -1, m2c = - (m2a * p.x + m2b * p.y);
 }
 pa = getLineIntersection(m1a, m1b, m1c, m1b, -m1a, -(m1b * co.x + (-m1a) * co.y));
 pb = getLineIntersection(m2a, m2b, m2c, m2b, -m2a, -(m2b * co.x + (-m2a) * co.y));
}
struct Interval {
 Pt p;
 double dist, l, r;
 Interval(double a = 0, double b = 0, double c = 0, Pt d = Pt()):
  dist(a), l(b), r(c), p(d) {
 }
 bool operator<(const Interval &x) const {
  return dist < x.dist;
 }
};
int main() {
 Pt pa, pb, co(1, 1), p(0, 0);
 const double pi = acos(-1);
 double diameter, radius;
 while(scanf("%lf %lf %lf", &diameter, &p.x, &p.y) == 3) {
  if(fabs(diameter) < eps)
   break;
  vector<Interval> interval;
  radius = diameter/2;
  for(int i = -20; i < 20; i++) {
   for(int j = -20; j < 20; j++) {
    getTangentIntersection(Pt(i, j), radius, p, pa, pb);
    double t1, t2;
    t1 = atan2(pa.y - p.y, pa.x - p.x);
    t2 = atan2(pb.y - p.y, pb.x - p.x);
    if(t1 > t2) swap(t1, t2);
    if(fabs(t1 - t2)*180/pi < 0.01f)
     continue;
    interval.push_back(Interval(pow(pa.x-p.x, 2)+pow(pb.y-p.y, 2), t1, t2, Pt(i, j)));
   }
  }
  sort(interval.begin(), interval.end());
  int ret = 0;
  for(int i = 0; i < interval.size(); i++) {
   double t1 = interval[i].l, t2 = interval[i].r;
   if(t2 - t1 < pi) {
    int f = 1;
    for(int j = 0; j < i; j++) {
     double l = max(t1, interval[j].l), r = min(t2, interval[j].r);
     if(l <= r + 0.01f * pi/180)
      f = 0, j = i;
    }
    ret += f;
   } else {    
    double t3, t4;
    t3 = t2, t4 = pi;
    t2 = t1, t1 = -pi;
    int f = 1;
    for(int j = 0; j < i; j++) {
     double l = max(t1, interval[j].l), r = min(t2, interval[j].r);
     if(l <= r + 0.01f * pi/180)
      f = 0, j = i;
    }
    if(!f)
     continue;
    t1 = t3, t2 = t4;
    for(int j = 0; j < i; j++) {
     double l = max(t1, interval[j].l), r = min(t2, interval[j].r);
     if(l <= r + 0.01f * pi/180)
      f = 0, j = i;
    }
    if(!f)
     continue;
    ret += f;
   }
  }
  printf("%d\n", ret);
 }
 return 0;
}

No comments:

Post a Comment